
3.7. LOOP PATTERNS 83

3.7 Loop Patterns

Input Loops

Both of the following patterns read strings until they get a blank input.

done = Fa l s e
while not done :

x = input (” Ente r someth ing : ”)
i f x == ”” :

done = True
else :

<whateve r you want to do wi th x>

or

while True :
x = input (” Ente r someth ing : ”)
i f x == ”” :

break
<whateve r you want to do wi th x>

Process elements of a sequence

for x in <sequence >:
<whateve r you want to do wi th x>

or

x = < f i r s t e l ement o f the sequence>
while <x i s in the sequence >:

<whateve r you want to do wi th x>
x = <next e l ement o f the sequence>

The second version usually involves using a numeric index to refer to the first
element of the sequence (index 0), the second element (index 1) and so forth.
Where it makes sense the first version is usually easier.

84

Do something until a condition is satisfied

while not <c ond i t i o n >:
<something>

or

while True :
i f <c ond i t i o n >:

break
someth ing

This is equivalent to the first version; it uses a break-statement to exit from
the loop

or

done = Fa l s e
while not done :

<something>
i f <c ond i t i o n >:

done = True

This allows the <condition> to be created by the action <something>.
or

while True :
<something>
i f <c ond i t i o n >:

break

This is completely equivalent to the preceding version; it just uses a break-
statement to exit from the loop. Note that this differs from the second version
only in the other of the statements.

